Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 153
1.
Talanta ; 274: 125923, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38569366

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.


Alkaloids , Brain , Mitragyna , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mitragyna/chemistry , Rats , Brain/metabolism , Brain/diagnostic imaging , Alkaloids/pharmacokinetics , Alkaloids/analysis , Alkaloids/chemistry , Male , Ions/chemistry , Tissue Distribution , Rats, Sprague-Dawley
2.
J Pharm Biomed Anal ; 243: 116078, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38489958

Kratom (Mitragyna speciosa) is a species of large tree that grows in Southeast Asia and is part of the Rubiaceae family. Its fresh leaves are harvested for their medicinal properties and used for their psychoactive effects. Kratom contains many biologically active alkaloids, including mitragynine and 7-OH-mitragynine, which are considered the two most important psychoactive components and constitute approximately 66% and 2% of the total alkaloid content. Other alkaloids are present in the plant, such as speciogynine, speciociliatine and paynantheine, but have less psychoactive activity. Over the past decade, the sale of kratom powder has increased on the Internet. This led to a significant increase in forensic cases. Given the lack of data existing in the literature, and the total absence of data in nails, the authors report a study to determine the best target alkaloids for documenting kratom consumption in this matrix. Fingernail clippings from a supposed kratom powder user were analyzed after liquid-liquid extraction, chromatography separation using a HSS C18 column and performed on an ultra-high performance liquid chromatography coupled to a tandem mass spectrometer. In the specimen, mitragynine was quantified at 229 pg/mg, speciogynine and paynantheine were both quantified at 2 pg/mg, and speciociliatine was quantified at 19 pg/mg. 7-OH-mitragynine was not detected. The interpretation of these concentrations is complex, since there is currently no reference in the literature, as this is the first identification of mitragynine and other kratom alkaloids in nails. Nevertheless, in view of the high concentration of mitragynine, the subject seems to be a repetitive user of kratom. According to the measured concentrations, it seems that mitragynine remains the best target to document kratom consumption, but the identification of the other alkaloids would enhance the specificity of the test.


Mitragyna , Secologanin Tryptamine Alkaloids , Nails/chemistry , Powders , Secologanin Tryptamine Alkaloids/analysis , Secologanin Tryptamine Alkaloids/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Mitragyna/chemistry
3.
Regul Toxicol Pharmacol ; 143: 105466, 2023 Sep.
Article En | MEDLINE | ID: mdl-37536550

Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.


Mitragyna , Plants, Medicinal , Male , Rats , Female , Animals , Plant Extracts/toxicity , Mitragyna/chemistry , Rats, Sprague-Dawley , Liver
4.
J Chromatogr A ; 1703: 464094, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37262932

Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive. Hyphenated techniques are generally preferred for the identification and quantification of these compounds, especially the main purported psychoactive substances, mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG), in raw and commercial products. Considering the vast popularity of this recreational drug and the growing concern about its safety, the analysis of alkaloids in biological specimens is also of great importance for forensic and toxicological laboratories. The review addresses the analytical aspects of kratom spanning the extraction techniques used to isolate the alkaloids, the qualitative and quantitative analytical methods and the strategies for the distinction of the naturally occurring isomers.


Illicit Drugs , Mitragyna , Plant Extracts/chemistry , Mitragyna/chemistry
5.
Angew Chem Int Ed Engl ; 62(35): e202303700, 2023 08 28.
Article En | MEDLINE | ID: mdl-37332089

Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.


Mitragyna , Secologanin Tryptamine Alkaloids , Mitragyna/chemistry , Mitragyna/metabolism , Secologanin Tryptamine Alkaloids/chemistry , Analgesics, Opioid
6.
PLoS One ; 18(3): e0283147, 2023.
Article En | MEDLINE | ID: mdl-36943850

The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.


Mitragyna , Secologanin Tryptamine Alkaloids , Plant Extracts/chemistry , Mitragyna/chemistry , Indole Alkaloids/analysis , Plant Leaves/metabolism , Metabolomics
7.
Molecules ; 28(1)2023 Jan 02.
Article En | MEDLINE | ID: mdl-36615587

Tamarindus indica and Mitragyna inermis are widely used by herbalists to cure diabetes mellitus. The aim of this study is to investigate the inhibitory potential of aqueous and various organic solvent fractions from both plants and some isolated compounds against advanced glycation end-products (AGEs). For this purpose, an in vitro BSA-fructose glycation model was used to evaluate the inhibition of AGE formation. Furthermore, the effects of the fractions on mouse fibroblast (NIH-3T3) and human hepatocyte (HepG2) survival were evaluated. The leaf, stem, and root fractions of both plants exhibited significant inhibition of AGEs formation. The IC50 values appeared to be less than 250 µg/mL; however, all fractions presented no adverse effects on NIH-3T3 up to 500 µg/mL. Otherwise, our phytochemical investigation afforded the isolation of a secoiridoid from the Mitragyna genus named secoiridoid glucoside sweroside (1), along with three known quinovic acid glycosides: quinovic acid-3ß-O-ß-d-glucopyranoside (2), quinovic acid-3-O-ß-d-6-deoxy-glucopyranoside, 28-O-ß-d-glucopyranosyl ester (3), and quinovic acid 3-O-α-l-rhamnopyranosyl-(4→1)-ß-d-glucopyranoside (4). In particular, 1-3 are compounds which have not previously been described in Mitragyna inermis roots. However, the isolated compounds did not exhibit AGE inhibitory activity. Further investigation on these potent antiglycation fractions may allow for the isolation of new antidiabetic drug candidates.


Mitragyna , Tamarindus , Mice , Animals , Humans , Mitragyna/chemistry , Maillard Reaction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hepatocytes , Glycation End Products, Advanced
8.
Drug Test Anal ; 15(2): 213-219, 2023 Feb.
Article En | MEDLINE | ID: mdl-36258649

Mitragyna speciosa, known as kratom, is a tropical tree native to Southeast Asia that has long been used to increase energy and in traditional medicine. Kratom leaves contain several indole alkaloids including mitragynine, mitraciliatine, speciogynine, and speciociliatine, which have the same molecular formula and connectivity, but different spatial arrangements (i.e., diastereomers). A routine liquid-chromatographic-high-resolution mass-spectrometric (LC-HRMS) multi-analyte method for addictive and herbal drugs in urine did not separate mitragynine from speciogynine and speciociliatine. Separation and individual measurement of the four diastereomers was possible with an improved LC method. All diastereomers were detected in 29 patient urine samples who tested positive for mitragynine with the routine method, albeit at variable absolute amounts and relative proportions. The presence of all diastereomers rather than individual substances indicated that they originated from the intake of kratom (i.e., plant material). Speciociliatine dominated in most samples (66%), whereas mitragynine and mitraciliatine were the highest in 17% each. A kratom product (powdered plant material) marketed in Sweden contained all diastereomers with mitragynine showing the highest level. In Sweden, there are signs of an increasing use of kratom in society, based on the results from drug testing, the number of poisons center consultations on intoxications, and customs seizure statistics. Because there may be health risks associated with kratom use, including dependence, serious adverse reactions, and death, analytical methods should be able to identify and quantify all diastereomers. In Sweden, this is important from a legal perspective, as only mitragynine is classified, whereas the other three diastereomers, and kratom (plant material), are not.


Mitragyna , Secologanin Tryptamine Alkaloids , Humans , Mitragyna/chemistry , Secologanin Tryptamine Alkaloids/analysis , Chromatography, Liquid/methods , Plant Extracts/chemistry
9.
J Anal Toxicol ; 46(9): 957-964, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36047661

Kratom is an herbal drug that is legal in the USA. While it is marketed as a safer alternative to opioids, it can cause opioid-like withdrawal symptoms when discontinued after regular use. Several case studies have shown that kratom exposure in utero can lead to symptoms in newborns consistent with neonatal abstinence syndrome. Here, we present a validated method for the detection of kratom in umbilical cord by liquid chromatography--tandem mass spectrometry. The umbilical cord is homogenized in solvent and kratom analytes are purified by solid phase extraction (strong cation exchange). Diastereomeric kratom alkaloids mitragynine (MG), speciociliatine (SC), speciogynine and mitraciliatine are separated by reverse phase chromatography on a phenyl-hexyl column. Applying this method to residual umbilical cords submitted to our laboratory for drug testing, 29 positive specimens exhibiting varied kratom analyte distributions were observed. MG and SC were the most abundant kratom analytes and were selected as biomarkers of kratom exposure. A cutoff concentration of 0.08 ng/g was established for both MG and SC.


Mitragyna , Prenatal Exposure Delayed Effects , Secologanin Tryptamine Alkaloids , Infant, Newborn , Female , Humans , Chromatography, Liquid/methods , Mitragyna/chemistry , Tandem Mass Spectrometry/methods , Secologanin Tryptamine Alkaloids/chemistry , Analgesics, Opioid
10.
Nutrients ; 14(19)2022 Sep 21.
Article En | MEDLINE | ID: mdl-36235558

Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally, compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose, mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of diabetes mellitus.


Mitragyna , Acarbose , Blood Glucose/analysis , Chromatography, Liquid , Ethanol/analysis , Lipase , Lipids/analysis , Methanol , Mitragyna/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Quercetin/analysis , Rutin/analysis , Tandem Mass Spectrometry , alpha-Glucosidases
11.
Psychopharmacology (Berl) ; 239(12): 3793-3804, 2022 Dec.
Article En | MEDLINE | ID: mdl-36308562

RATIONALE: Kratom derives from Mitragyna speciosa (Korth.), a tropical tree in the genus Mitragyna (Rubiaceae) that also includes the coffee tree. Kratom leaf powders, tea-like decoctions, and commercial extracts are taken orally, primarily for health and well-being by millions of people globally. Others take kratom to eliminate opioid use for analgesia and manage opioid withdrawal and use disorder. There is debate over the possible respiratory depressant overdose risk of the primary active alkaloid, mitragynine, a partial µ-opioid receptor agonist, that does not signal through ß-arrestin, the primary opioid respiratory depressant pathway. OBJECTIVES: Compare the respiratory effects of oral mitragynine to oral oxycodone in rats with the study design previously published by US Food and Drug Administration (FDA) scientists for evaluating the respiratory effects of opioids (Xu et al., Toxicol Rep 7:188-197, 2020). METHODS: Blood gases, observable signs, and mitragynine pharmacokinetics were assessed for 12 h after 20, 40, 80, 240, and 400 mg/kg oral mitragynine isolate and 6.75, 60, and 150 mg/kg oral oxycodone hydrochloride. FINDINGS: Oxycodone administration produced significant dose-related respiratory depressant effects and pronounced sedation with one death each at 60 and 150 mg/kg. Mitragynine did not yield significant dose-related respiratory depressant or life-threatening effects. Sedative-like effects, milder than produced by oxycodone, were evident at the highest mitragynine dose. Maximum oxycodone and mitragynine plasma concentrations were dose related. CONCLUSIONS: Consistent with mitragynine's pharmacology that includes partial µ-opioid receptor agonism with little recruitment of the respiratory depressant activating ß-arrestin pathway, mitragynine produced no evidence of respiratory depression at doses many times higher than known to be taken by humans.


Mitragyna , Plant Extracts , Secologanin Tryptamine Alkaloids , Animals , Rats , Analgesics, Opioid/pharmacology , Mitragyna/chemistry , Oxycodone/pharmacology , Plant Extracts/pharmacology , Receptors, Opioid , Secologanin Tryptamine Alkaloids/pharmacology
12.
J Pharmacol Exp Ther ; 383(3): 182-198, 2022 12.
Article En | MEDLINE | ID: mdl-36153006

The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.


Mitragyna , Secologanin Tryptamine Alkaloids , Animals , Rats , Adrenergic alpha-2 Receptor Agonists , Analgesics, Opioid/pharmacology , Mitragyna/chemistry , Naltrexone/pharmacology , Receptors, Adrenergic, alpha-2 , Receptors, Opioid, mu/agonists , Secologanin Tryptamine Alkaloids/pharmacology , Yohimbine/pharmacology
13.
AAPS J ; 24(5): 86, 2022 07 19.
Article En | MEDLINE | ID: mdl-35854066

Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.


Mitragyna , Secologanin Tryptamine Alkaloids , Animals , Dogs , Humans , Macaca fascicularis , Mice , Microsomes, Liver/metabolism , Mitragyna/chemistry , Mitragyna/metabolism , Rats , Secologanin Tryptamine Alkaloids/chemistry , Secologanin Tryptamine Alkaloids/metabolism , Secologanin Tryptamine Alkaloids/pharmacology
14.
J Immunol Methods ; 507: 113291, 2022 08.
Article En | MEDLINE | ID: mdl-35640723

Mitragynine is an alkaloid from Mitragyna speciosa Korth. (kratom), a native tropical plant in Southeast Asia. It could render psychotropic effects and is often misused in substitution for commercial drugs. In recent years, the consumption of kratom has grown rapidly and has led some countries to ban its use. The misuse of kratom can be detected and monitored through the determination of mitragynine from biological samples of the users. Therefore, the development of a rapid and effective detection method is needed. In this study, polyclonal antibodies were produced using mitragynine coupled to a carrier protein (cationic bovine serum albumin, cBSA) as an immunogen, which was prepared with coupling agents (i.e., N, N- dicyclohexylcarbodiimide, DCC and N-hydroxysuccinimide, NHS). It was conjugated to different mitragynine structure, 16-COOCH3 (methyl ester) and 9-OCH3 (aromatic ether). 2,4,6-Trinitrobenzenesulfonic acid (TNBS) method showed that 45 and 46 amino groups were bound to C22-MG-cBSA and C9-MG-cBSA, respectively. Fourier-transform infrared spectroscopy (FTIR) spectral changes at C22- and C9-hydroxymitragynine indicated reduction and demethylation process. In UV-Vis spectra, conjugated mitragynine to cBSA and OVA were displayed at a spectral region at 240-300 nm. For the antibody titre, the C22-MG-cBSA anti-serum showed a significantly higher titre than the C9-MG-cBSA at 1/128000 and 1/32000 dilutions, respectively. The detection range of the developed competitive indirect ELISA (CI-ELISA) was 0.01 to 10.00 µg/mL (R2 = 0.9964). The assay exhibited a limit of detection (LOD) and limit of quantification (LOQ) at 0.041 and 0.124 µg/mL, respectively. The antibody produced is a high-value biorecognition molecule that can be further used in developing immuno-based detection methods such as immunosensors and immunochromatographic lateral flow assays. This will benefit the task force or forensic agencies for toxicological screening with high speed and efficiency.


Biosensing Techniques , Mitragyna , Antibodies , Esters , Ether , Ethers , Immunoassay , Mitragyna/chemistry , Secologanin Tryptamine Alkaloids
15.
Planta Med ; 88(9-10): 838-857, 2022 Aug.
Article En | MEDLINE | ID: mdl-35468648

Many consumers are turning to kratom (Mitragyna speciosa) to self-manage pain and opioid addiction. In the United States, an array of capsules, powders, and loose-leaf kratom products are readily available. Additionally, several online sites supply live kratom plants. A prerequisite to establishing quality control and quality assurance standards for the kratom industry, or understanding how alkaloid levels effect clinical outcomes, is the identification and quantitation of major and minor alkaloid constituents within available products and preparations. To this end, an ultra-high performance liquid chromatography-high resolution mass spectrometry method was developed for the analysis of 8 indole alkaloids (7-hydroxymitragynine, ajmalicine, paynantheine, mitragynine, speciogynine, isopaynantheine, speciociliatine, and mitraciliatine) and 6 oxindole alkaloids (isomitraphylline, isospeciofoleine, speciofoline, corynoxine A, corynoxeine, and rhynchophylline) in US-grown kratom plants and commercial products. These commercial products shared a qualitatively similar alkaloid profile, with 12 - 13 detected alkaloids and high levels of the indole alkaloid mitragynine (13.9 ± 1.1 - 270 ± 24 mg/g). The levels of the other major alkaloids (paynantheine, speciociliatine, speciogynine, mitraciliatine, and isopaynantheine) and the minor alkaloids varied in concentration from product to product. The alkaloid profile of US-grown M. speciosa "Rifat" showed high levels of the indole alkaloid speciogynine (7.94 ± 0.83 - 11.55 ± 0.18 mg/g) and quantifiable levels of isomitraphylline (0.943 ± 0.033 - 1.47 ± 0.18 mg/g). Notably, the alkaloid profile of a US-grown M. speciosa seedling was comparable to the commercial products with a high level of mitragynine (15.01 ± 0.20 mg/g). This work suggests that there are several M. speciosa chemotypes.


Mitragyna , Secologanin Tryptamine Alkaloids , Chromatography, High Pressure Liquid , Indole Alkaloids/analysis , Mitragyna/chemistry , Oxindoles/analysis , Plant Leaves/chemistry
16.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article En | MEDLINE | ID: mdl-35409208

Mitragynine (MTR), the main indole alkaloid of the well-known plant kratom (Mitragyna speciosa), is one of the most studied natural products nowadays, due to its remarkable biological effects. It is a partial agonist on the opioid receptors, and as such relieves pain without the well-known side-effects of the opioids applied in the clinical practice. MTR and its derivatives therefore became novel candidates for drug development. The poor aqueous solubility and low bioavailability of drugs are often improved by cyclodextrins (CyDs) as excipients through host-guest type complex formation. Among the wide variety of CyDs, sulfobutylether-beta-cyclodextrin (SBEßCyD) is frequently used and official in the European and U.S. Pharmacopoeia. Herein, the host-guest complexation of MTR with ßCyD and SBEßCyD was studied using chiroptical and NMR spectroscopy. It was found by NMR measurements that MTR forms a rather weak (logß11 = 0.8) 1:1 host-guest complex with ßCyD, while the co-existence of the 2MTR∙SBEßCyD and MTR∙SBEßCyD species was deducted from 1H NMR titrations in the millimolar MTR concentration range. Sulfobutylation of ßCyD significantly enhanced the affinity towards MTR. The structure of the formed inclusion complex was extensively studied by circular dichroism spectroscopy and 2D ROESY NMR. The insertion of the indole moiety was confirmed by both techniques.


Cyclodextrins , Mitragyna , Secologanin Tryptamine Alkaloids , beta-Cyclodextrins , Cyclodextrins/chemistry , Magnetic Resonance Spectroscopy , Mitragyna/chemistry , Solubility
17.
PLoS One ; 17(4): e0259326, 2022.
Article En | MEDLINE | ID: mdl-35472200

Leaves harvested from kratom [Mitragyna speciosa (Korth.)] have a history of use as a traditional ethnobotanical medicine to combat fatigue and improve work productivity in Southeast Asia. In recent years, increased interest in the application and use of kratom has emerged globally, including North America, for its potential application as an alternative source of medicine for pain management and opioid withdrawal syndrome mitigation. Although the chemistry and pharmacology of major kratom alkaloids, mitragynine and 7-hydroxymitragynine, are well documented, foundational information on the impact of plant production environment on growth and kratom alkaloids synthesis is unavailable. To directly address this need, kratom plant growth, leaf chlorophyll content, and alkaloid concentration were evaluated under three lighting conditions: field full sun (FLD-Sun), greenhouse unshaded (GH-Unshaded), and greenhouse shaded (GH-Shaded). Nine kratom alkaloids were quantified using an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Greenhouse cultivation generally promoted kratom height and width extension by 93-114% and 53-57%, respectively, compared to FLD-Sun. Similarly, total leaf area and leaf number were increased by 118-160% and 54-80% under such conditions. Average leaf size of plants grown under GH-Shaded was 41 and 69% greater than GH-Unshaded and FLD-Sun, respectively; however, no differences were observed between GH-Unshaded and FLD-Sun treatments. At the termination of the study, total leaf chlorophyll a+b content of FLD-Sun was 17-23% less than those grown in the greenhouse. Total leaf dry mass was maximized when cultivated in the greenhouse and was 89-91% greater than in the field. Leaf content of four alkaloids to include speciociliatine, mitraphylline, corynantheidine, and isocorynantheidine were not significantly impacted by lighting conditions, whereas 7-hydroxymitragynine was below the lower limit of quantification across all treatments. However, mitragynine, paynantheine, and corynoxine concentration per leaf dry mass were increased by 40%, 35%, and 111%, respectively, when cultivated under GH-Shaded compared to FLD-Sun. Additionally, total alkaloid yield per plant was maximized and nearly tripled for several alkaloids when plants were cultivated under such conditions. Furthermore, rapid, non-destructive chlorophyll evaluation correlated well (r2 = 0.68) with extracted chlorophyll concentrations. Given these findings, production efforts where low-light conditions can be implemented are likely to maximize plant biomass and total leaf alkaloid production.


Mitragyna , Secologanin Tryptamine Alkaloids , Substance Withdrawal Syndrome , Chlorophyll A , Chromatography, Liquid , Mitragyna/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry
18.
Adv Pharmacol ; 93: 35-76, 2022.
Article En | MEDLINE | ID: mdl-35341571

Kratom products have been historically and anecdotally used in south Asian countries for centuries to manage pain and opioid withdrawal. The use of kratom products has dramatically increased in the United States. More than 45 kratom alkaloids have been isolated, yet the overall pharmacology of the individual alkaloids is still not well characterized. The purpose of this chapter is to summarize in vitro and in vivo opioid activities of the primary kratom alkaloid mitragynine and its more potent metabolite 7-hydroxymitragynine. Following are experimental procedures described to characterize opioid receptor activity; receptor binding and functional assays, antinociceptive assays, operant conditioning assays, and respiratory plethysmography. The capacity of kratom alkaloids to confer tolerance and physical dependence as well as their pharmacokinetic properties are also summarized. The data reviewed here suggest that kratom products and mitragynine possess low efficacy agonist activity at the mu-opioid receptor in vivo. In addition, kratom products and mitragynine have been demonstrated to antagonize the effects of high efficacy mu-opioid agonists. The data further suggest that 7-hydroxymitragynine formed in vivo by metabolism of mitragynine may be minimally involved in the overall behavioral profile of mitragynine and kratom, whereas 7-hydroxymitragynine itself, at sufficiently high doses administered exogenously, shares many of the same abuse- and dependence-related behavioral effects associated with traditional opioid agonists. The apparent low efficacy of kratom products and mitragynine at mu-opioid receptors supports the development of these ligands as effective and potentially safe medications for opioid use disorder.


Mitragyna , Substance-Related Disorders , Analgesics, Opioid/pharmacology , Humans , Mitragyna/chemistry
19.
J Ethnopharmacol ; 284: 114824, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34763040

ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) Havil., popularly known as Kratom (KT), is a medicinal plant used for pain suppression in Southeast Asia. It has been claimed to assist drug users withdraw from methamphetamine (METH) dependence. However, its use was controversial and not approved yet. AIM OF THE STUDY: This study was conducted to characterize local field potential (LFP) patterns in the nucleus accumbens (NAc) and the hippocampus (HP) in mice with METH conditioned place preference (CPP) that were treated with KT alkaloid extract. MATERIALS AND METHODS: Male Swiss albino ICR mice were implanted with intracraneal electrodes into the NAc and HP. To induce METH CPP, animals were injected intraperitoneally once a day with METH (1 mg/kg) and saline (0.9% w/v) alternately and put into METH/saline compartments to experience the associations between drug/saline injection and the unique environmental contexts for 10 sessions. Control group received saline injection paired with both saline/saline compartments. On post-conditioning day, effects of 40 (KT40), 80 (KT80) mg/kg KT alkaloid extract and 20 mg/kg bupropion (BP) on CPP scores and LFP powers and NAc-HP coherence were tested. RESULTS: Two-way ANOVA revealed significant induction of CPP by METH sessions (P < 0.01). Multiple comparisons indicated that METH CPP was completely abolished by KT80 (P < 0.001). NAc gamma I (30.0-44.9 Hz) and HP delta (1.0-3.9 Hz) powers were significantly increased in mice with METH CPP (P < 0.01). The elevated NAc gamma I was significantly suppressed by KT80 (P < 0.05) and the increased HP delta was significantly reversed by KT40 (P < 0.01) and KT80 (P < 0.001). In addition, NAc-HP coherence was also significantly increased in gamma I (30.0-44.9 Hz) frequency range (P < 0.05) but it was reversed by KT80 (P < 0.05). Treatment with BP did not produce significant effect on these parameters. CONCLUSIONS: These findings demonstrated that KT alkaloid extract significantly reversed CPP scores and LFP patterns induced by METH administration. The ameliorative effects of the extract might be beneficial for treatment of METH craving and addiction.


Alkaloids/pharmacology , Behavior, Addictive/drug therapy , Methamphetamine/adverse effects , Mitragyna/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Alkaloids/chemistry , Animals , Behavior, Addictive/chemically induced , Central Nervous System Stimulants/adverse effects , Humans , Male , Mice , Mice, Inbred ICR , Nucleus Accumbens/drug effects , Phytotherapy , Plant Extracts/chemistry
20.
Molecules ; 26(12)2021 Jun 17.
Article En | MEDLINE | ID: mdl-34204457

Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53-2.91 g) and showed a constant mitragynine content (6.53-7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.


Mitragyna/chemistry , Plant Extracts/chemistry , Secologanin Tryptamine Alkaloids/isolation & purification , Animals , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mitragyna/metabolism , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Secologanin Tryptamine Alkaloids/chemistry , Solvents/chemistry
...